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Germany
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Abstract. The relation between discrete topological field theories on triangulations of two-
dimensional manifolds and associative algebras was worked out recently, The starting point for
this development was the graphical interpretation of the associativity as flip of trangles. We
show that there is a more general relation berween flip-moves with two r-gons and Z,_z-graded
associative algebras. A detailed examination shows that flip-invariant models on a lattice of
n-gons can be constructed from Zz- or Z)-graded algebras, reducing in the second case to
triangulatiohs of the two-dimensicnal manifolds. Related problems occur naturally in three-
dimensional topological lattice theories.

Various aspects of topological lattice theories have been considered in the last few vears. In
Regge’s discretized approach to gravity, with varying edge lengths and fixed coordination
numbers, the discretized version of the two-dimensional Einstein action is topological due
to the discretized Gaul—Bonnet-theorem [1, 2]. Other models with fixed edge length and
varying lattice have been constructed as discrete analogues of continuous topological field
theories. The invariance of the continuous theory under the diffeomorphism group is
discretized to the invariance under flip-moves of the lattice [3], see figure 1. The field
variables are located on the vertices of the triangulation. Another type of models arises
from matrix models of two-dimensional quantum gravity [4], where one wants to couple a
topological action to the model to control the topology dependence of the series expansion.
In these models the field variables are defined on the edges of the triangles. They are
classified by associative algebras [3, 6]. The approach to topological lattice theories from
the matrix models poses the problem to handle ‘topological’ actions coupled to models
which not only contain a cubic but higher monomials in the potential. This was solved in
{6] for monomials of degree 4 and for arbitrary polynomials containing a cubic term, leading
to quadrangulations of two-dimensional manifolds and to lattices built out of triangles and
higher polygons.

This paper, which is based on [7], treats the remaining models for monomials of arbitrary
degree, i.e. for manifolds covered by n-gons, r = 3. This is of interest not only in the two-
dimensional case: it has been shown in [8] that for certain three-dimensional topological
lattice theories one has to deal with polygons and multivalent hinges. They briefly discuss
two-dimensional lattice theories with non-triangadar faces and assume that the weights on
the polygons have to be subdivision invariant. This is a result which in our work is a
consequence of a rather natural condition on the weights.

From the given data we construct the sets of weights [; ; on the n-gons and the
weights ¢'/ on the edges satisfying a flip condition, an associative graded algebra, which
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Figure 1. Moves for n = 3, {(a} Flip-move and {#) pyramid move,

allows the classification of the models and the complete computation of the partition
function. We recover two types of flip-invariant models: topological models on
triangulations and models on chequered graphs, both already noted in [6]. This is a complete
classification: all flip-invariant models on polygonizations belong to one of these two types.
The effect of imposing a condition similar to the pyramid move is discussed at the end of
this paper.

Let us now formalize the model. We consider a polygonization of a two-dimensional
compact oriented manifold by n-gons. On this polygonization we establish a statistical
model with variables i, j,... = 1,..., N on the edges of the n-gons, weights I';, ; € C
on the n-gons and g/ € C on the edges. The weights I have to be cyclic, the weights g
have to be symmetric.

We assume that the matrix (q"f) is regular and the inverse matrix (g;;) exists (this
condition can always be achieved by a simple transformation and a reduction of the range
of the indices, see {6]). The partition function is the sum of the product of all weights over
all indices.

For n = 3 the model is called topological if the weights are invariant under the moves in
figure 1, these moves act transitively on the set of all two-dimensional simplicial complexes
with fixed Buler characteristic. This was already shown by Alexander in 1930 [9], see also
[10] for a discussion. It is remarkable that on the set of regular graphs of degree 3 with
genus £ (i.c. graphs with vertices of valence 3 embedded in a two-dimensional manifold
with h handles) and fixed humber of vertices the dual move to the flip-move acts transitively.
These graphs may contain double lines and self loops and therefore are not necessarily dual
graphs of triangulations of the manifold. Actually in the proof [7] such graphs are used as
representatives in each class.

In this case one defines an algebra .4 which is a vector space with basis {g), ..., ex}
and multiplication e; -¢; = Af;e;, where the structure constants are formed by A%, = I'y;;g™.
(Here and in the following, sum convention is assumed.} The elements of the matrix (g:;),
the inverse matrix of (4%), form the coefficients of a symmetric bilinear form ¢ on A
with g;; = g{e;,¢;). Due to the cyclicity of I';jx this bilinear form is invariant under
multiplication in .A:

gla-b,cy=gla,b-c) YabceA (1)

An algebra together with a metric which fulfils (1) is called metrized, see e.g, [11].

As shown in several publications [5, 6], the conditions imposed by the flip and the
pyramid move lead to an associative and semisimple algebra. The flip condition is the cause
for associativity. The pyramid condition was thought to be the origin of the semisimplicity,
but in [6] it was shown that the ‘non-semisimple parts’ of the algebra {which consists not
only of the radical, but also of some Levi subalgebra) give no contributions to the partition
function of the statistical models considered here, and can therefore be ignored. What
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Figure 2, Flip-moves for two #-gans.

remains is a semjsimple algebra. Imposing the pyramid move is therefore not necessary for
the classification of topological models.

The relation between flip-moves and associative algebras was (see [6]} extended to the
case of flips of two 4-gons, leading to Z,-graded associative algebras. There occurred the
new feature that some of the models vanish on graphs which cannot be chequered.

We now generalize the work in [6] to arbitrary n-gons. First, we generalize the flip-
move in figure 1 for two r-gons as shown in figure 2. Imposing a condition similar to the
pyramid move will not be necessary for the classification of the topological models, see the
concluding remarks.

The weights invariant under the moves in figure 2 fulfil the relations

Cirotacsr @ Cstgotan = Dindt @ Ushyydzggty =+ -+ -
Trivial examples of weights invariant under these flips are constructed from models on
triangulations, the weight of the n-gon is defined by the fusion of the weights of n — 2
triangles. A non-trivial example is the four-vertex model which was discussed in [4]. We
will see that all models are similar to one of these examples.

As in the case n = 3 we define a N-dimensional complex vector space .4 with basis
{er....,ex} and a metric g on A by g(e;,¢)) = ¢;;. We define a (n — 1)-linear map
P:Ax...x A4 Aby

P(ef']a ey ei,-,..]) = rll..,in_qursea‘ -
Again the metric is invariant with respect to the map I':
q(r(eil, D er'ﬂ_l)a E,-“) = 1-‘.21...:'a = rl‘z...zuq
= f?(r(er‘;- v 131},)’ ei[)
:Q(ef]': r(ellz,"'ve{'n))' (2)

The flip condition in figure 2 imposes the following conditions on the map T':
r(r(ah ---:an—l)aaru (RN |a2‘l—3) = r(als P(a2; ‘---:an)val’l-i-l; s -sa?.n—3)

=-=Ia, ..., -2, T (@ ....60-3) 3)
which are equivalent to

Mo(id @ @id*>") =T o (i @ I' @ id" ) )



3120 C Nowak

forallr,s =0,...,n—2. This is a generalization of the associativity condition of associative
algebras. An easy but time-consuming induction shows that this general associativity holds
for more than two T':

Mroid"ere idn-Z—r,) o-o(id*@I'® idk(n—.?)-r;)
=To(d" @T®id*)o...0(id* @T @ id*"~?-) 5)

for all admissible r; and 5;.
For practical reasons we rename the vector space .4 by .4, and the metric g by g;.
Then we can prove the following main theorem:

Theorem 1. Let A; be a N-dimensional complex vector space. Let ' : A}‘“" — Ay be
a C-multilinear map and g, ; A; x A1 = C a symmetric, non-degenerate metric, which
satisfy the invariance condition (2) and the general associativity condition (3).

Then there exists a Z,_;-graded, associative, metrized algebra (A=A, G A, B...8
Ax_3,g), where g is a non degenerate, symmetric bilinear form on A with 4,4, = ¢1
and gl4,x4 =0fori+ j#2 mod (n—2).

The map I' and the algebra multiplication are related by

I'lai,....ap-1)=ay -+~ a1 Vay,...,ap_1 € Ay . (6)
Remark. An algebra A = @' A, is Z,-graded, if the muftiplication fulfils 4; x Aj -

Aigjmodm. Hence ay a3 € Az, a1 -az-a3 € As..., and finally a;...4,-1 € A;. We
remark, that the algebra is not supergraded, as it is assumed automatically by Lie algebras.

Let {e1, ..., €4} be an ordered basis of A with respect to the grading. Let lfj be the
structure constants with respect to this basis. Then we get with (6),

r‘i[...llﬂ = QI(r(fi, Yeroy ern-l)i' ei,') = q(efg o 'er',l_p efn)
= q“'nk::izl:f!‘s rae ’\':n—lirl-l
= A-hi;r;qns‘ A'S]isfzqrzﬁ e qrn-:sn-zls#_zz"“”,n - (7)
The inner indices are summed over 1, ..., dim.4, but due to the grading of the algebra

every sunumation is restricted to the indices belonging to one part of the grading.

Thanks to the associativity we can replace the right-hand side of (7) by any evaluation
of the associative product in g{e, ...e,_,, €} The graphical interpretation is simple: we
can replace the n-gon with weight I';,_;, by a triangulation with n — 2 triangles and weights
A and summation over all inner indices, as in figure 3. Duc to the associativity of the
algebra .4 this model flip is invariant. We see flip-invariant models on n-gonizations of
a two-dimensional manifold are equivalent to flip-invariant models on triangulations with
a greater range of indices and the restriction that certain indices only take values in the
original part. The value n — 2 will appear often, therefore we define p:=n — 2.

To prove the theorem we have to perform the following steps:

N

Figure 3. Split n-gon.
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(i) We define a non-associative graded algebra structure on the vector space M =
@f_, AP by the multiplication

©® ®uSh® Bh=a8b k+1<p ©
Tiay, - bpa1—4) @ bpyzk ® - @ by k+i>p

fora=a ®- - - ®a, and b = by ® --- ® b;. This algebra is finite-dimensional, but
non-associative. The properties of " allow the definition of an ideal 7, such that M/! is
associative. This is not the usual way to construct an associative algebra, which would start
with the infinite dimensional universal tensor algebra over A; and divide out an infinite-
dimensional ideal to get a finite-dimensional associative algebra.

(ii) We define the subspace ! ;= ®f=11k of M with [, :== {0} and

I = {ac A%|a- b=0Vbe AM7H (9)

for k =2,..., p and show that [ is a two-sided ideal of M.
(iii) We can therefore define the algebra

oo

A= M/!=§1 APyl = ké A (10)

which will be shown to be associative and contains the original vector space .4;. The
relation (6) concides with the definition of the multiplication.
(iv) We define a bilinear formg on M fora =a,® - - @a, b=b0 @ - ® b, € M by

0 k+1#2 mod p
gla,b) ={ qi{a;. (@, ....5)) k+l=n (11)
qiiay. ) k=l=1

and show that the projection of ¢ on .4, which we will also denote by g, is well defined
and symmetric.

(v) We show that ¢ is non-degenerate on 4.

(vi) We show that g is invariant on 4.

Proofs and Remarks.
(i) The multiplication (8) is, in general, not associative, consider, for example,

a-(b1®---®bp'c)=a®l“(b[,...,bp,c)
@a-h® --®by)-c=I(a,br,....0p)SGc .

But we can show that the multiplication is associative for factors a € A®™, b e A?™, c €
A?"‘,... with ny +np + 0.4 ---=lmod p, e.g.

(@-b)-c=a (b-c) (12)

{a-by-c)-d=(a-(b-c))-d. (13)
For this, let ¢ =g, ® - - ®a, b.=51®---®b,,, c=¢c1 @ ®cp,,.... Since
By + 7y + ne 5 - = 1 mod p, all the products are of the form

Fo(id"@T@id? ") o(id* @I @id** ™) o...(a1...., 00, b1,...)

and products of the same factors are equivalent by (5).
{i1) The condition a - b = O for all b ¢ A?p ks equivalent to b+ a = 0 for all
b e A®P*"* and we can define alternatively

h=l{ae A¥|b.a=0Vbe A%}, (14)
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In order to see this, we use the invariance condition {2) and the symmetry of g;: For all
b=b®...@bpy1 € AP forallc € Ay and for a = a'e; @ - @e;, € Iy, holds
O=a-b= a‘.l---ikl"(ei“ cer €y, bl‘ e vbP"l‘l-k)

& 0= qlfail"'itr(e,'” cory Bips &l,.e, bp-l-l—k)f <l

< 0 (E"') q[(ahmitr(bl-.r ey bp-i—l“-k’ <, 81[ 1 vy el'k)! b])

&S 0= ail"'i*r'(bz, . bp,;.]_};, Co8iyyvnns e,-k)

= ® - @bpt1x®C)-a.

Since the elements of the form b; @ -+ ® by 14 ® ¢ span Ai@"“"k, the equivalence is
proved.

The subspace [ of M is anideal of M: Leta € I, thenforall b & .A?""’, np=1,...,p
and all c € .A‘,g"' with n. such that n, + np + n. = 1 mod p, we have

(12

{a-by.c = a-b-c)=0 =a-bei (15)
since b- ¢ € AT*'™* and
b-a).c Z b @c) =0
S !

€ I by (15

by (14), hence also b-a € { and [ is a two sided ideal.

(iti) The algebra defined in (10} is associative. To prove this, we have to show that for
a,b,ce Mholds (a-B).¢c—a (b-¢) € I. Again it is sufficient to consider & € AG"' be
A@”"‘, ce A% Letd e AP with ny such that n, + np +n. + ng = 1 mod p. Then

(a-b)-c)dL@ (b-c)-d
S{ab)c—a-b-c))-d=0

and since this holds for all d, the difference is in J and the algebra .4 is associative.

We define Ay = A, With the multiplication A4; - A; — A, moa p becomes
A= Ad...® 4,3 a Z,-graded associative algebra. The condition (6} is satisfied
due to the definition (8): Let a1,..., 8543 € Ay. Then

ay - 8pp) = F(dl, s ..,EIP_H).

(iv) The map g : M x M — C defined in (11} is well defined on .4 x A. To prove this we
have to show that g(a, b) is independent of the choice of the representatives of @ and b, i.e.
for all ¢z, ¢ € I holds: gla+ca, b+¢s) = gla, b),1.e. gla, cp) = 0 = g{c,, b) = g{ca, €b).
Due to the block structure of g it is sufficient to consider for a, b, ¢, and ¢; only
homogeneous elements. Leta = a1 ® --- ®ay € A, o = /e, ® ... ® ¢ € I,
k+!=2mod p. Inthecase k =1 =1¢, =0and g(a,cp) =0, fork+1 =n we
have

gla,cp) =gla; ® - Ray,cl'"Vie;, @ ... ¢y)

= gi{a;, e/ Piay, s Bk Bjia e €5))
=qi{a, (@2 ®---@a)-cp) =0
=0

analogous g(c,, b) =0, g{cg, cp) = 0 is then clear.
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q is symmetric: fora=a® - Qap. b=b @ - - @b is
e k+1x£2mod p: gla,b)=0=g(b,a)
® k=l=1:qg(ab=gqab)=qb.a)=qb.a)
o kt+l=n:
Q(asb)=Q(a]®"‘®aﬁ:sbl ®‘“®b})=q1(ﬂ],r(a2,...,ak,b],...,b;})
2
gql(blvr(bh=--’b.’1alv"-»ak)) :q(baa)'
(v) ¢ is non-degenerate. Due to the block structure of the _mgtric it is again sufficient
to consider homogeneous elements a € AP and ¢ = cfi*ie, ® .- Q ¢, € A%
k+{=72 mod p. Let q(a,c):OforalIa:al®--'®akEA?":
Sg@® ®a. e, ®.. . Qe)=0Va,. . qed
@%(alycjt"'ﬁp(ﬂz,---,akAEj,,---,6‘;,))=0Va11---,ak €4,
{:cj""f’l"(az,...,ak,ejl,...,ej,)= (r®...8a) - c=0
Scel.

(vi) To prove the invariance of the metric we consider againa =a, @ ---® a,,. b =
@ --Q@by,,c=c;® - ®cCp. FOr ng + np + 1, £ 2 mod p we have

gla,b-c)=0=gq(a-b,0).

For ng + np +n. =n we have

q(a'ch) =Q(Caa ‘b)=41(flv F(CIZ-:---scn‘-rah---aan,,:bla---:bnb))
=q1{a]rp(a’2=---?ana;bh----bnbv Cl:----cng)) =Q(a,b'5)- (16)

Forn,+nmp+n.=2modpleta’ =a, @ ---®ax, i.e. a=a; -a’. Then

gla-b,c)=g{lay-a')-b,c)=gla - (@ -b),c)

D gar, (@ b)) =glay,d  (b-c))

D gta ' b-c)=gqla,bc).
The metric ¢ has a block structure with respect to the decomposition A = @7 _3.4,, due
tog(A;, A;)) =0fori+ j#£2 mod p we get forn >4

0 [
g 0

O
7= (a)= o |- a7
i 0
The ith column and row, respectively, belong to the component A4;_; of 4. We use the
symbol g for the metric and for the matrix {g;;) in a basis. We assume in the following,
that we have chosen a basis {¢;} which respects the grading of A. It is easy to see that the

inverse matrix (g“) then has the same structure; matrix elemeats ¢* are only not equal to
zero if the basis elements ¢; and ¢; lie in components .4; and A; with k +{ =2mod p. T

We now use the methods elaborated in [6] to calculate the partition functions of the
flip-invariant models. We first review a few facts about associative, metrized algebras (see
(6] for details).
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o Let A be a complex, associative, metrized algebra. We decompose A = BDH L @ R,
where B is the largest semisimple ideal of .4, L is a (non-unique) semisimple Levi-
subalgebra and R is the radical of 4. B and L @ R are orthogonal with respect to g,
ie. LOR =B
¢" # 0 for ¢; € L is only possible if ¢; € R
B itself is the direct sum of the simple ideals of 4, B = &;1;, where [; are the simple
ideals of A and these are all orthogonal: I; L I; for i # j.

We now check the relation of the decompositions A = B@ L& R and A = ©.A;.
To this end we introduce the grading operator 8 on A by 8(@) = ofa for a; € A,
w = exp(27i/p). & is an automorphism of A since A X A = Apiimedp.

Every f-invariant subalgebra X of A allows a decomposition X = &, X, with X; C A,
B is a §-invariant subalgebra, since the image of a semisimple ideal is a semisimple ideal,
therefore B = @;5;. By the theorem | in [12] there exists a #-invariant Levi algebra L
which allows a decomposition L = &, L;. The image of the radical R is the radical, hence
we also have R = @ R;.

We therefore have a decomposition of each .4; = B; & L, & R; and we can choose a
basis of A respecting this decomposition.

Since BB and L @ R are orthogonal the partition function splits into the partition function
of a model with the semisimple algebra B and of the algebra L ¢ R. The latter can be
shown to be zero, the arguments are the same as in [6], we will only give a sketch of the
discussion.

We consider the split graph, let i; be an arbitrary index. Let ¢;, € R, we consider
all triangles which contain the vertex opposite to the index iy. We label the indices as in
figure 4. The partition function of this part of the graph, summed over all inner indices
Flr.-.,ry and sy, ..., Sy, is given by

. L — i i . v — 372 3 o1
Z:;.....r,v = lrumq A'rzrzsz - -Aml:van - A'rm/\rziz s lnur',v

= (Rfﬂ : RI'NI Taena T -Rheh)rl = (Re,ltiz...e,h, er[)rl
=tR,,

Epnanliy

where R, is the right multiplication in A considered as an endomorphism: R,& = ba, R;
is short for R,.. If ¢;, € R, then is also g; e;, ... e;, € R and the trace vanishes, therefore
all configurations with an index in R give no contribution to the partition function.

Now let ¢; € L, then g = O for all ¢; ¢ R, but if ¢ € R then we can repeat the
discussion above with the result that also all configurations with an index in L give no

Figure 4. Indices on the split graph.
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contribution to the partition function.

There remains the discussion of the semisimple algebra B. It is 6-invariant and the
(orthogonal) direct sum of all simple ideals of 4. One might expect that each simple ideal
I is itself @-invariant, but this is not true in general.

# is an automorphism of 4, the image of a simple ideal /; is also a simple ideal
I = 8(h) which can be different from [;. We get a sequence I\, I, ..., I, of disjoint
isomorphic simple ideals with 8(f,) = I; since 87 = 1 the number £ must be a divisor of
p. p = ki. Not each ideal [; is 8-invariant, but the direct sum I = I & ... @ [ is, and
we can decompose itin { = @ @ ... @ I[P~V with IV C A; and 6(JP) = 0/ IV, The
partition function decomposes into several parts belonging to #-invariant semisimple ideals
of A

By the assumptions in theorem 1 g|;0 is non-degenerate. We will test this condition to
gain information about &: let g, b e IV a=a1+ - +a, b=by + -+ by, aj, by € I;.
Since 8(a) = wa and 8(g;) € [, we get 8(g;) = wa;41, F(a;) = wa; and therefore

aj = ' ey = a = Zw]'jﬁf"(a])
j

b= '8/ (by)
J

= gla,b) =y _ g a), 877 By = ) ™00 (@), 67 (01))
if i

= sztl—r')wzti—l)q(ah by) = kg(ay, by)
i

where we have used g(6(a), #(F)) = w?q(a, b). 6% is an automorphisms of I, which is a
simple complex algebra isomorphic to a full complex matrix algebra. By the theorem of
Noether-Skolem {13] is 6% an inner automorphism, i.e. there exists an invertible element
s € I with 6%(a) = s~ 1as for all @ € I;. Then

g(8%(a), 6" (b)) = w*g(a1, b))
=g(s ays, s7by5) = g(a1, br) Yay, by € 1,

where we have used the invariance and the symmetry of g. Hence o = 1 which is only
possible for 2k = p or k = p. All other cases, e.g. £k = 1 for p > 2 which corresponds to
a #-invariant simple ideal do not occur in the context of flip-invariant models.

There remains the discussion of these two cases:

k = p. This is the trivial one. There are p simple ideals isomorphic to a full complex
matrix algebra C"*" Let {¢;} be a basis of 11, then is {&; = e;+w™'0(e;)+- - -+w!~POP~ (e}
a basis of .4;. Denote by (g}, the f; component of a, then we get for the weights

rf]...f, = Q(r(éilf 400y éip.;.:)! Eiﬂ) = Q(Ei; o 'EJ'P.',]-: éf'ﬂ)
= kq(l)((é.!] e é'lfp-;-|)]1 (Ef,,)]) = kq(n(ei[ = efp+gw el-n) - (18)

This is exactly the weight one would get for a n-gon glued together out of n — 2 triangles
with a topological weight on the triangles. Therefore this case is called trivial.

For the calculation of the partition function if is convenient to consider the dual graph
in the double-line representation [6]. We choose in f;, which is isomorphic to a full
complex matrix algebra, the standard basis {£,;} of r x r matrices with (E;;)y = 881
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ie| |is
i i
I

5
%1 ?:4
iq

1
22 22 .
?

3 Figure 5. Double-line representation with equal indices.

g = gl1,xs, is an invariant metric on 7y, this is, up to a factor, the trace of the matrices:
gW(a, b) = Bir(ab). We get for the weights of the vertices of degree

Urjiigjedndn = PB8jin8siy -+ Spoty (19)
and for the weights of the edges (g(a, &) = pg™(a, b))
g MR = (pB) 18518, - (20)

All indices on a closed line must have the same value as indicated in figure 5, each closed
line corresponds to a vertex of the original graph., The computation of the partition function
is therefore reduced to a counting of factors, We get a factor r for each vertex of the
polygonization, a factor (p8)~" for each edge and a factor p# for each n-gon. This results
n

v
Z=r"(pB) " (pp)" = (pﬂ)"(;—ﬁ) (21)
where V is the number of vertices of the polygonization, E is the number of edges and
P the number of plaquettes, the n-gons. We get the typical dependence of the partition
function on the Euler characteristic x of the manifold. If one adjusts the constant 8, such
that ¥ = pf, then the partition function will be topological. See [6] and the end of this text
for a discussion,

The other case 2k = r is non-trivial and leads to new aspects. Leta = a1+ --+a, € | o,
ie. 0(a) = wa. Then a; = ©'~'6~Ya}), 8%(a;) = o*a; = —a;. In this case is ® = 6*
is an automorphism from 7, to [; with @ = 1. By the thcorem of Noether-Skolem
it is an inner automorphism, there exists a & & 7, with 8(a) = s~las for ail a € ).
Then ®Xa) = s~%as® = a ie. [a,5%] = 0 for all @ € {;. With Schur's Lemma we
conclude that s2 = Al, we can set A = I, Then we can choose a basis in [; such

that 5 = diag(1,...,1,-1,...,~1) with M times 1 and N times —1, M + N = r.
®(a,) = s 'a;s = —a; is fulfilled for all matrices a; € I; which have the off-diagonal
block form

0 O

ie {a1); =0fori, j < Morfori, j > M. I is then a Z,-graded algebra. A basis of
IMisgivenby (E;; = Ey+ 0 0(E) +.. .+l EDPi KM <jor j< M <i}
The weights are given by
Th jiisfoeindn = kBojin8pnty « - - By (23}
qz‘l,f:r'zjz = (kﬁ)'lé,-.sﬁjzf. (24)
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8 Figure 6. Double-line representation of a chequered graph

where the pairs {1 f1, iz fa. . . ., injp fulfil the alternating relations | K M < jand j € M < I.

In the double-line representation of the dual graph each double-line carries both types
of indices, the indices of a line must have the same value. See figure 6 where different
linetypes denote different ranges of indices,

For an arbitrary graph it is not possible to distribute the indices in this manner. In this
case the graph is called chequered [6, 14], i.e. the faces of the dual graph can alternately be
coloured black and white such that nowhere are two black or two white faces neighbours.
Such graphs emerge in the study of complex matrix models. A hint for the relation to
complex matrix models is also the observation that the automorphism @ plays the role of
the complex conjugation, distinguishing diagonal and off-diagonal block matrices as real
and tmaginary. If the graph is not chequered the partition function vanishes, otherwise we
get

7 = (MVINVZ + MVQNVI)(kﬁ)P—E
v
= oS ) N M
where V) and V, are the numbers of vertices whose dual plaquettes carry the same type of
index, these are flip-invariants of the model, V = V; + V..

This mode] can distinguish smaller classes of graphs, the flip-move is therefore not
transitive. See [6] for a discussion of the consequences of this fact.

We have seen that it is possible to classify all considered flip-invariant models and to
calculate their partition functions. It is clear that these are not topological invariants of
the underlying manifold, which have to be a function of the Euler characteristic, but only
of the graphs with respect to the flips. In the search for topological models we have to
impose additional conditions, such as the pyramid move, But the effect of such additional
conditions can be understood without introducing the move: In the trivial case additional
conditions will restrict the constants to fulfif » = pB. In the chequered case, a move
regpecting the chequered property, e.g. the Yang-Baxter move [6], will lead to M = N
and Z = (kg)*( %)V. Imposing even more conditions, which do not respect the chequered
property, will force the partition function to vanish. All models claiming to be topological
are therefore trivial.
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