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Flip-moves and graded associative algebras 

Claus Nowak 
Fakultat FCr Physik der Universit5t Freiburg Hennann-Herder-Su. 3, 79104 Freiburg i.Br., 
Germany 

Received I 1  August 1994, rn final form 30 March 1995 

Abstract The relation between discrete topolo@cal field theories on triangulations of lwo- 
dimensional manifolds and associative algebras was worked out recently. The starling point for 
this development was the graphical interpretation of [he associativity as flip of triangles We 
show that there is a more genenl relation between flip-moves with two n-gons and Z.-pgraded 
associative algebras. A dewiled examination shows that Rip-invariant models on a lanice of 
n -pns  can be consrructed from 22- or ZI-graded algebras, reducing in the second case to 
triangulations of the two-dimensional manifolds. Related problems occur naturally in Ihree- 
dimensional topological lattice theories. 

Various aspects of topological lattice theories have been considered in the last few years. In 
Regge's discretized approach to gravity, with varying edge lengths and fixed coordination 
numbers, the discretized version of the two-dimensional Einstein action is topological due 
to the discretized GauR-Bonnet-theorem [ I ,  21. Other models with fixed edge length and 
varying lattice have been constructed as discrete analogues of continuous topological field 
theories. The invariance of the continuous theory under the diffeomorphism group is 
discretized to the invariance under flip-moves of the lattice [3], see figure 1. The field 
variables are located on the vertices of the triangulation. Another type of models arises 
from matrix models of two-dimensional quantum gravity [4], where one wants to couple a 
topological action to the model to control the topology dependence of  the series expansion. 
In these models the field variables are defined on the edges of the triangles. They are 
classified by associative algebras [S, 61. The approach to topological lattice theories from 
the matrix models poses the problem to handle 'topological' actions coupled to models 
which not only contain a cubic but higher monomials in the potential. This was solved in 
[6] for monomials of degree 4 and for arbitrary polynomials containing a cubic term, leading 
to quadrangulations of twwdimensional manifolds and to lattices built out of triangles and 
higher polygons. 

This paper, which is based on 171, treats the remaining models for monomials of arbitrary 
degree, i.e. for manifolds covered by n-gons, n > 3. This is of interest not only in the two- 
dimensional case: it has been shown in [8] that for certain three-dimensional topological 
lattice theories one has to deal with polygons and multivalent hinges. They briefly discuss 
two-dimensional lattice theories with non-triangular faces and assume that the weights on 
the polygons have to be subdivision invariant. This is a result which in our work is a 
consequence of a rather natural condition on the weights. 

From the given data we construct the sets of weights rjt,,,;" on the n-gons and the 
weights q'j on the edges satisfying a flip condition, an associative graded algebra, which 
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3118 C Nowak 

Figure 1. Moves for n = 3. ( 0 )  Flip-move'md (b) pyramid move. 

allows the classification of the models and the complete computation of the partition 
function. topological models on 
triangulations and models on chequered graphs, both already noted in [6]. This is acomplete 
classification: all flip-invariant models on polygonizations belong to one of these two types. 
The effect of imposing a condition similar to the pyramid move is discussed at the end of 
this paper. 

Let us now formalize the model. We consider a polygonization of a two-dimensional 
compact oriented manifold by n-gons. On this polygonization we establish a statistical 
model with variables i, j , .  .. = 1, .  .., N on the edges of the n-gons. weights ri ,... ;. E C 
on the n-gons and 9'j E C on the edges. The weights r have to be cyclic, the weights 9 
have to be symmetric. 

We assume that the matrix (9'1) is regular and the inverse matrix (qij) exists (this 
condition can always be achieved by a simple transformation and a reducfion of the range 
of the indices, see [6]). The partition function is the sum of the product of all weights over 
all indices. 

For n = 3 the model is called topological if the weights are invariant under the moves in 
figure 1, these moves act transitively on the set of all two-dimensional simplicial complexes 
with fixed Euler characteristic. This was already shown by Alexander in 1930 [9 ] ,  see also 
[IO] for a discussion. It is remarkable that on the set of regular graphs of degree 3 with 
genus h (i.e. graphs with vertices of valence 3 embedded in a two-dimensional manifold 
with h handles) and fixed number of vertices the dual move to the flipmove acts transitively. 
These graphs may contain double lines and self loops and therefore are not necessarily dual 
graphs of triangulations of the manifold. Actually in the proof [7] such graphs are used as 
representatives in each class. 

In this case one defines an algebra A which is a vector space with basis (el, . . . , eN) 
and multiplication ei , ej = hfjek, where the structure constants are formed by hfj = r; ir9rx.  
(Here and in the following, sum convention is assumed.) The elements of the matrix (4,,), 
the inverse matrix of (9"), form the coefficients of a symmetric bilinear form 9 on A 
with 9ij = 9(ei,ej) .  Due to the cyclicity of rijx this bilinear form is invariant under 
multiplication in A 

We recover two types of flip-invariant models: 

9 ( a .  b. c )  = 9(a ,  b .  c)  V a ,  b,  c E A (1) 
An algebra together with a metric which fulfils (1) is called metrized, see e.g. [ l l ] .  

As shown in several publications 15, 61, the conditions imposed by the Rip and the 
pyramid move lead to an associative and semisimple algebra. The flip condition is the cause 
for associativity. The pyramid condition was thought to be the origin of the semisimplicity, 
but in [6] it was shown that the 'non-semisimple parts' of the algebra (which consists not 
only of the radical, but also of some Levi subalgebra) give no contributions to the partition 
function of the statistical models considered here, and can therefore be ignored. What 
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Figure 2. Flipmoves for two n-gona. 

remains is a semisimple algebra. Imposing the pyramid move is therefore not necessary for 
the classification of topological models. 

The relation between flip-moves and associative algebras was (see [SI) extended to the 
case of flips of two 4-gons, leading to &-graded associative algebras. There occurred the 
new feature that some of the models vanish on graphs which cannot be chequered. 

We now generalize the work in [6] to arbitrary n-gons. First, we generalize the flip- 
move in figure 1 for two n-gons as shown in figure 2. Imposing a condition similar to the 
pyramid move will not be necessary for the classification of the topological models, see the 
concluding remarks. 

The weights invariant under the moves in figure 2 fulfil the relations 

ri8,,.in-,rqrsrsi "... b.r = ri *... ia,qrsr3ia+ ,... ib-2j, = . 
Trivial examples of weights invariant under these flips are constructed from models on 
triangulations, the weight of the n-gon is defined by the fusion of the weights of n - 2 
triangles. A non-trivial example is the four-vertex model which was discussed in [4]. We 
will see that all models are similar to one of these examples. 

As in the case n = 3 we define a N-dimensional complex vector space A with basis 
(e l , .  . . , e N )  and a metric q on A by q ( e i ,  ej) = qjj. We define a (n - 1)-linear map 
F : A  x . . . x A w A by 

r(ei ,3. . , ,e;f i - , ) :=rd ,,.. i.-,,qrseS 
Again the metric is invariant with respect to the map r: 

q(r(e;~, . . . ,e;". ,) ,e,")=r~ ,... i, = r;l.,.8n;, 
=q(r(ei , .  . . . ,  e;"),ei ,)  
= q(e; , ,  ... , e ; , ) ) .  (2) 

The flip condition in figure 2 imposes the following conditions on the map r: 
r(r(al,. . . , an-] ) ,  a,, . . . ,atl-3) = r(al, . . . , U,),U,+~, . . . , ab-3) 

r(al,. . . r(a,-l,. . . , (3) 

(4) 

=...= 
which are equivalent to 

r o (id' 8 r Q id"-'-') = r o (id5 Q r 0 id"-'-') 
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for all r, s = 0, . . . , n-2. This is a generalization of the associativity condition of associative 
algebras. An easy but time-consuming induction shows that this general associativity holds 
for more than two r: 
r 0 (idr) @ r @ id"-Z-rl) 0 . . . 0 (id" @ r @ idk("-*)-Q) 

= r o (id" @ r @id"-'"') 0.. . o (id" @ r @ idk'"-z'-s~) (5) 
for all admissible ri and 3;. 

For practical reasons we rename the vector space A by AI and the metric q by 41. 
Then we can prove the following main theorem: 

Theorem I .  Let AI be a N-dimensional complex vector space. Let r : A;"-' 4 At be 
a C-multilinear map and q1 : AI x A1 4 C a symmetric, non-degenerate metric, which 
satisfy the invariance condition (2) and the general associativity condition (3). 

Then there exists a Z,-z-graded, associative, metrized algebra (A = @ AI @ . . . @ 
An-3, q),  where q is a non degenerate, symmeuic bilinear form on A with qla, x ~ l  = ql 

and qla,xA, = 0 for i + j f 2 mod (n - 2). 
The map r and the algebra multiplication are related by 

r(al ,..., a, -, ) = a , . . . . . a .  -, v u l  ,..., U . - ~ E A ~ .  (6) 

Remark An algebra A = @;";'A, is Z,-graded, if the multiplication fulfils A; x Aj -+ 
A;+jmdm. Hence al az E Az, a1 . a2 . a3 E: A3.. . , and finally (11 . . .an- ,  E AI.  We 
remark, that the algebra is not supergraded, as it is assumed automatically by Lie algebras. 

be the 
structure constants with respect to this basis. Then we get with (6), 

Let ( e l ,  . . . , elAl] be an ordered basis of A with respect to the grading. Let 

ri ,... ;. = q l ( r ( e i , .  .... e r n J e t J = q ( e i  ,... e; e;,) 

= qr;nk:i2A:,3 . . ACn.,in-L 
Ai,i~,,q"s'A,,, lnqrzh . . . q'"-zs"-2Asn-2,,,-,;n . (7) 

The inner indices are summed over 1, . . . , dim A, but due to the grading of the algebra 
every summation is restricted to the indices belonging to one part of the grading. 

Thanks to the associativity we can replace the right-hand side of (7) by any evaluation 
of the associative product in q(e,, . . . ei*-, , eiJ,  The graphical interpretation is simple: we 
can replace the n-gon with weight r;,.,.jn by a triangulation with n -2 triangles and weights 
k ; j ~  and summation over all inner indices, as in figure 3. Due to the associativity of the 
algebra A this model flip is invariant. We see flip-invariant models on n-gonizations of 
a two-dimensional manifold are equivalent to flip-invariant models on triangulations with 
a greater range of indices and the restriction that certain indices only take values in the 
original part. The value n - 2 will appear often, therefore we define p := n - 2. 

To prove the theorem we have to peifonn the following steps: 

Figure 3. Split n-gon 
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(i) We define a non-associative graded algebra structure on the vector space M = 
f&lA?k by the multiplication 

a ,  = al Q , . .Qak Q blQ. . .Q bl = a  0 b k + l < p  I r ( a i , . . . , b p t i - t ) ~ b p + 2 - b @ . . . ~ b /  k + [ >  p (8) 

for a = a1 &3 . ' '  Q ak and b = bl 8 ' ' Q b,. This algebra is finite-dimensional, but 
non-associative. The properties of r allow the definition of an ideal I ,  such that MI1 is 
associative. This is not the usual way to construct an associative algebra, which would start 
with the infinite dimensional universal tensor algebra over AI and divide out an infinite- 
dimensional ideal to get a finite-dimensional associative algebra. 

(ii) We define the subspace I := @ b l I k  of M with 11 := (0) and 

l k  := (a  E A?kga. b = 0 V b E A;+'-') (9) 
for k = 2 , ,  . . , p and show that I is a two-sided ideal of M. 

(iii) We can therefore define the algebra 

which will be shown to be associative and contains the original vector space AI .  The 
relation ( 6 )  concides with the definition of the multiplication. 

(iv) We define a bilinear form q on M f o r a  = a l  Q ...@ ak ,  b = bl @ .  . .Qb, E M  by 

( O  91 tat. b l )  k = l = l  

k + l f 2 m o d  p 
q(a ,b)  := ql(at ,r(a2,  ..., btN k + l = n  (11) 

and show that the projection of q on A, which we will also denote by q, is well defined 
and symmetric. 

(v) We show that q is non-degenerate on A. 
(vi) We show that q is invariant on A. 

(i) The multiplication (8 )  is, in general, not associative, consider, for example, 
Proofs and Remarks, 

a (bl Q ... 8 bp c) = a  Qr(b1 , .  . . , bp, c )  
(a. bl Q . . .Q  b p ) .  c =  r ( a ,  b l ,  . . . , bp)  0 c . 

But we can show that the multiplication is associative for factors a E AY, b E A y ,  c E 
AY,. . . with n. + n b  + n,  + . . .3 1 modp, e.g. 

For this, let a = al 8 ' .  Q anm, b, = bl Q . . Q b,,, c = C I  
n, + nb + n, -t . . . 

0 idp-'!) o (idr2 8 

. . . @ enc. . , , . Since 
1 mod p ,  all the products are of the form 

l- o (id" Q Q id2p-'2) 0.. . (al . .  , . ,ann, b l ,  . . .) 
and products of the same factors are equivalent by (5). 

(ii) The condition a . b = 0 for all b E A, @p+l-k . 
IS  equivalent to b . a = 0 for all 

and we can define alternatively 

Zk = (a E AY'lb .a = O  V b E A, 

b E 
I 

(14) 
@+I-k 1. 
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In order to see this, we use the invariance condition (2) and the symmetry of 91: For all 
b = bl @ . . . @ bp+i-h E Ay'-', for all c E AI and for a = @. . . @ ei, E Ik holds 

0 = a . b = ail...i*r(e. ,,, . . . , e lk ,b i , .  .. ,bp+i-k) 
o 0 = ql(a'L,-ikr(ei,, . . . , eiX, b,, . . . , bp+l-k)r c) 

r(b2.. . . , b,+i-k, c, e , , ,  . . . , 
* 0 = a"..''L Wz, ... , bp+l-r,c,ei,, . . . ,e;k) 
o 0 = ( b l @ . .  . @  bp+l-i @ c) . a.  

Since the elements of the form bi @ . .. @ bpcl-i @ c span A, 
proved. 

and all c E dy with n, such that n. + nb + n, 

b ~ )  
0 (2) = q,(aii...h 

. .  

@p+l-k , the equivalence is 

The subspace I of M is anideal of M: Leta  E I,,, then for all b E A y ,  nb = 1 , .  . . , p 
1 mod p ,  we have 

(15) 
(12) ( a . b ) . c  = a . ( b . c ) = O  = + a . b e i  

@P+l-k  and since b . c E d, 
(12) ( b . a ) . c  = b .  ( a . c )  = O  

v 
E I by (15) 

by (14). hence also b ' a  E I and I is a two sided ideal. 
(iii) The algebra defined in (IO) is associative. To prove this, we have to show that for 

a,  b, c E M holds (a .b )  . c -a .  ( b , c )  E I .  Again it is sufficient to consider a E A?, b E 
A y ,  c E A y .  Let d E d y  with nd such that n. + llb + n, + nd = 1 mod p .  Then 

(13) ((a . b)  . c )  d = (a . ( b .  c ) )  . d 
+ ( (a  b)  c - a .  ( b .  c ) )  . d  = 0 

With the multiplication Ai , dj -+ Ai+, mod 

and since this holds for all d, the difference is in I and the algebra A is associative. 
becomes 

A = do @ . . . 6B d + 3  a 2,-graded associative algebra. The condition (6) is satisfied 
due to the definition (8): Let al , , . . , a,+] E Al. Then 

We define a0 := A,. 

al a,+] = r(al, . . . , a,+,). 

(iv) The map q : M x M -f C defined in (1 1) is well defined on Ax A. To prove this we 
have to show that q(a, b)  is independent of the choice of the representatives of a and 6 ,  i.e. 
for all CO, Cb E / holds: q(a-'rC., b+Cb) = q(a, b), i.e. Q(a, Cb) = 0 = q(c., b) = q(c., Cb). 
Due to the block structure of q it is sufficient to consider for a ,  b, c. and Cb only 
homogeneous elements. Let a = a1 @ . . . @ ak E d?k, Cb = d , - j i e .  II @ , . . @ e j ,  E li, 
k + l  2 mod p .  In the case k = I  = 1 Cb = 0,and q(a.cb) = 0, f o r k  + I  = n we 
have 

q(a, C b )  = q(al @ . . @ax. cjt-jlej, @ . . . @  ej,) . .  
= q1(a1, cl l - , f ir(az .  . . . , ak, ej,, ..., el,)) 
= q1 (al. (a2 @ . . , @ ad . Cb) = 0 .  
P 

=o 
analogous q(c., b) = 0, q(c,, C b )  = 0 is then clear. 
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q is symmetric: for a = al 8 . . . 8 ak. b = 61 8 . , , 8 bi is 

k + 1 $ 2 m o d p : q ( a , b ) = O = q ( b , a )  
k = l = l :  q(a ,b )=q l (a ,b )=q l (b ,a )=q(b .a )  
k + l = n :  

q(a ,b)=q(al  @ . " @ a a , b i  @.. .@bi )=q l (a~ , r (a : !  ,..., aa,bl, ..., bl)) 
(2, - gi(bi,  r(bz, .. . , bl ,al , .  . . ,a t ) )  = q ( b , a ) .  

(v) q is non-degenerate. Due to the block structure of the metric it is again sufficient 
to consider homogeneous elements a E A?k and c = c".-'Je 1 (  8 ' ' .  8 e,, E A?', 
k + I  

. .  

2 mod p .  Let q(a, c) = 0 for all a = a1 @ .  . , @ a,, E A?': 
e q(al 8 " ~ a k .  cjl...jiej, 8 . . . 8 e],) = o v al ,  . . .ak B AI 

q 1 ( a l , c j ~ - j ~ r ( a 2  ,..., ak.ej, , . . . ,  e,,))=OVal ,..., ah E A ]  
* cj,...idr(az , t , . , akr e,, I . . . , elt) = (a2 8 . . . @ah) ' c = 0 
* C € I , .  

(vi) To prove the invariance of the metric we consider again a = al @ . . . 8 a,, , b = 
bl 8 , . .@ b,,, c = C I  63, ..@enc. For n, + nb + n ,  $ 2 mod p we have 

q(a, b .C)  = 0 = q(n.  b , c ) .  

For n, + nb + n, = n we have 

q(a . b,  4 = q(c, a b)  = ql(ci1 UcZ, . . . , cnc, a ] ,  . . . ,ana,  b l ,  . . . I b d  
= q1 (ai, V a z ,  . . . ,ane, bl ,  . . . , b,,, c 1 ,  . . . , cnc))  = q(a, b . c)  . (16) 

For n. +nb + n ,  = 2 mod p let a' = az @ . . . @ a k 3  i.e. a = al .a'. Then 

q ( a .  b, c)  = q((al ' a ' ) .  b, c )  = q(a1 . (a' .  b),  c) 

(5) q(al, (a' b)  c )  = q(aI, a' . ( b  . c ) )  
(2, - q(al 'a ' ,  b .  c) = q(a,  b . c ) .  

to q ( d i , A j )  = Ofor i + j $ 2  mod p we get for n > 4 
The metric q has a block structure with respect to the decomposition A = @:::Ak, due 

0 0 
0 0 

,,, (17) 

The ith column and row, respectively, belong to the component A;-] of A. We use the 
symbol q for the metric and for the matrix ( q i j )  in a basis. We assume in the following, 
that we have chosen a basis {e; )  which respects the grading of A. It is easy to see that the 
inverse m i x  (qij)  then has the same structure; matrix elements qiJ are only not equal to 
zero if the basis elements ei and e, lie in components dk and AI with k + I 5 2mod p .  0 

We now use the methods elaborated in 161 to calculate the partition functions of the 
flip-invariant models. We first review a few facts about associative, metrized algebras (see 
161 for details). 
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Let A be a complex, associative, metrized algebra. We decompose A = B f3 L f3 R ,  
where 5 is the largest semisimple ideal of A, L is a (non-unique) semisimple Levi- 
subalgebra and R is the radical of A. B and L 69 R are orthogonal with respect to q, 
i.e. L @ R = B'. 
q'j # 0 for ei E L is only possible if ej E R 
B itself is the direct sum of the simple ideals of A B = @;I;, where li are the simple 
ideals of A and these are all orthogonal: I, I I j  for i # j .  

We now check the relation of the decompositions A = B @ L 8 R and A = f3kAk. 
To this end we introduce the grading operator 0 on A by 0(ak) = wkak for ak E Ax. 
w = exp(2xi/p). e is an automorphism of A since d k  x A, --t Ak+lm,,dp. 

Every 0-invariant subalgebra X of A allows a decomposition X = d,& with Xk C A,. 
B is a 0-invariant subalgebra, since the image of a semisimple ideal is a semisimple ideal, 
therefore B = @A&. By the theorem 1 in 1121 there exists a &invariant Levi algebra L 
which allows a decomposition L = f3&. The image of the radical R is the radical, hence 
we also have R = f3kRx. 

We therefore have a decomposition of each d k  = f3 L i  f3 Ra and we can choose a 
basis of A respecting this decomposition. 

Since B and L €3 R are orthogonal the partition function splits into the partition function 
of a model with the semisimpk algebra B and of the algebra L CB R. The latter can be 
shown to be zero, the arguments are the same as in 1-51, we will only give a sketch of the 
discussion. 

We consider the split graph, let il be an arbitrary index. Let e;, E R, we consider 
all triangles which contain the vertex opposite to the index i j ,  We label the indices as in 
figure 4. The partition function of this part of the graph, summed over all inner indices 
r1 , .  . . , rN and SI,. . . , SN, is given by 

Z; ,._... i,, = ) . r , ; , ~ , P ' ) . r l i 2 s ,  . . .).m,,iNsXqsNr' = ).:i,k:;2 . . . ).:N;,, 
= ( R ; ,  .R;,v, . . . . - R  i ,er , )"  =(Re,,t,t...e,,,~,,Y' 

where R, is the right multiplication in A considered as an endomorphism: R,b z ba, R; 
is short for R ,  , If e;, E R,  then is also e;, e;, . . . e;, E R and the trace vanishes, therefore 
all configurations with an index in R give no contribution to the partition function. 

Now let ei E L ,  then q'j = 0 for all e, 6 R ,  but if ej E R then we can repeat the 
discussion above with the result that also all configurations with an index in L give no 

= Re,le,,,..c,N 

Figure A Indices on the split graph. 
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contribution to the partition function. 
There remains the discussion of the semisimple algebra U. It is 0-invariant and the 

(orthogonal) direct sum of all simple ideals of A. One might expect that each simple ideal 
I is itself 6'-invariant, but this is not true in general. 

0 is an automorphism of A, the image of a simple ideal II is also a simple ideal 
I2 = e(/,) which can be different from I ] .  We get a sequence 11, Iz . .  . . , / k  of disjoint 
isomorphic simple ideals with 0 ( i k )  = 11; since 0P = 1 the number k must be a divisor of 
p ,  p = k l .  Not each ideal 1; is &invariant, but .the direct sum I = II 63 . . . 63 Ik  is, and 
we can decompose it in I = I ( O )  fB . . . fB with I ( ) )  c Aj and 0 ( I ( j ) )  = w J l ( j ) ,  The 
partition function decomposes into several parts belonging to 0-invariant semisimple ideals 
of A. 

By the assumptions in theorem 1 qIiw is non-degenerate. We will test this condition to 
gain information about k :  let a,  b E I ( ' ) ,  a = a]  +.. . +ak, b = bl +.' + bk, aj ,  bj E I j .  
Since 0(a)  = wa and 0(aj) E Ij+i  we get 0(aj)  = waj+l, @(a,) = wal and therefore 

+ q(a, b) = C 0 ~ - ' - ~ q ( 0 ' - ' ( a i ) ,  0'-l(bi)) = EoJ~(~-~)~(~'~-~(uI), Oi-l(b~)) 
i . j  i 

= C w 2 ( 1 - O w 2 ( i - 1 )  q h ,  bt 1 = 61) 

where we have used q(B(a), 0 (b ) )  = w2q(a, 6) .  0k is an automorphisms of I ] ,  which is a 
simple complex algebra isomorphic to a full complex matrix algebra. By the theorem of 
Noether-Skolem [13] is B k  an inner automorphism, i.e. there exists an invertible element 
s E II with = s-las for all a E 11. Then 

d0'@1), @(bi ) = o*q(ai. bi) 
= ~ ( s - ' ~ I ~ s , s - ' ~ I s )  = q ( a l , b l )  Va'a,,bi E Ii 

where we have used the invariance and the symmetry of q. Hence wzx = 1 which is only 
possible for 2k = p or k = p .  All other cases, e.g. k = 1 for p > 2 which corresponds to 
a 0-invariant simple ideal do not occur in the context of flip-invariant models. 

There remains the discussion of these two cases: 
k = p .  This is the trivial one, There are p simple ideals isomorphic to a full complex 

matrix algebraCrX' Let { e ; )  be a basis of 1 1 ,  then is { Z i  = ei+w-'0(ei)+. , .+w'-PW-'(ei)} 
a basis of AI. Denote by (a ) ]  the 11 component of a, then we get for the weights 

This is exactly the weight one would get for a n-gon glued together out of n - 2 triangles 
with a topological weight on the triangles. Therefore this case is called trivial. 

For the calculation of the partition function it is convenient to consider the dual graph 
in the double-line representation [6]. We choose in 11, which is isomorphic to a full 
complex matrix algebra, the standard basis { E , j }  of r x r matrices with (Eij)ki = 8&i. 
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q(')  = qlr,x,, is an invariant metric on 11, this is, up to a factor, the trace of the matrices: 
q(I)(a, b )  = p tr(ab). We get for the weights of the vertices of degrce n 

(19) r . . . . = p p a . .  8 . .  
~ , I L W ~ ~ . h ~ "  1m im ' ' h i ,  

and for the weights of the edges (q(Z, 6 )  = pq(I)(a,  b ) )  

( P B ) -  'aj1 iz ajzi, . (20) qilhhh = 

All indices on a closed line must have the same value as indicated in figure 5, each closed 
line corresponds to a vertex of the original graph. The computation of the partition function 
is therefore reduced to a counting of factors. We get a factor r for each vertex of the 
polygonization, a factor ( p p ) - l  for each edge and a factor p p  for each n-gon. This results 
in 

where V is the number of vertices of the polygonization, E is the number of edges and 
P the number of plaquettes, the n-gons. We get the typical dependence of the partition 
function on the Euler characteristic x of the manifold. If one adjusts the constant p, such 
that r = pp. then the partition function will be topological. See [6] and the end of this text 
for a discussion. 

The other case 2k = r is nowtrivial and leads to new aspects. Let a = al+. ..+ab E I"), 
i.e. @(a) = ma. Then a; = m'-iEli-l(aj), Sx(al)  = d a 1  = -al. In this case is 0 = 6' 
is an automorphism from I I  to I I  with O2 = 1. By the theorem of Noether-Skolem 
it is an inner automorphism, there exists a s E I I  with @(a) = s-las for all a E I]. 
Then @(a) = s-zasz = a i.e. [a,s2] = 0 for all a E 11. With Schur's Lemma we 
conclude that s' = A l .  we can set A = 1 .  ?hen we can choose a basis in 11 such 
that s = diag(1.. . . , 1, - 1 , .  . , , -1) with M times 1 and N times - I ,  M + N = r .  
@(a,) = s-lals = -al is fulfilled for all matrices al E Il which have the off-diagonal 
block form 

o n  
a 1 = ( 0  0 j 



Flip-moves and graded associative algebras 3127 

Figure 6. Double-line representation of a chequered graph 

where the pairs i, j l ,  iz j z .  . , . , in j .  fulfil the alternating relations i < M < j and j 6 A4 < i. 
In the double-line representation of the dual =wph each double-line canies both types 

of indices, the indices of a line must have the same value. See figure 6 where different 
linetypes denote different ranges of indices. 

For an arbitrary paph  it is not possible to distribute the indices in this manner. In this 
case the graph is called chequered [6, 141, i.e. the faces of the dual graph can altemately be 
coloured black and white such that nowhere are two black or two white faces neighbours. 
Such graphs emerge in the study of complex matrix models. A hint for the relation to 
complex matrix models is also the observation that the automorphism 0 plays the role of 
the complex conjugation, distinguishing diagonal and off-diagonal block matrices as real 
and imaginary. If the graph is not chequered the partition function vanishes, otherwise we 
get 

Z = (M"INV> + M"zNv')(k~)P-" 

where VI and V, are the numbers of vertices whose dual plaquettes carry the same type of 
index, these are flip-invariants of the model, V = Vi + V,. 

This model can distinguish smaller classes of graphs, the flip-move is therefore not 
transitive. See [6] for a discussion of the consequences of this fact. 

We have seen that it is possible to classify all considered flip-invariant models and to 
calculate their partition functions. It is clear that these are not topological invariants of 
the underlying manifold, which have to be a function of the Euler characteristic, but only 
of the graphs with respect to the flips. In the search for topological models we have to 
impose additional conditions, such as the pyramid move. But the effect of such additional 
conditions can be understood without introducing the move: In the trivial case additional 
conditions will restrict the constans to fulfil r = pb. In the chequered case, a move 
respecting the chequered property, e.g. the Yang-Baxter move [6], will lead to M = N 
and Z = (kp)x($)'. Imposing even more conditions, which do not respect the chequered 
property, will force the partition function to vanish. All models claiming to be topological 
are therefore trivial. 
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